CONTROVERSES NUCLEAIRES !
ACTUALITE INTERNATIONALE
L'Europe veut capturer au laser l'énergie des étoiles
http://www.lemonde.fr
ADIT, septembre 2007

LE MONDE | 04.09.07
     Epuisement des ressources fossiles et lutte contre l'effet de serre obligent, le nucléaire reprend des couleurs. Qu'il s'agisse des centrales à fission actuelles, dont le parc mondial est en cours d'extension ou de renouvellement. Ou des réacteurs à fusion qui, espèrent les physiciens, fourniront peut-être à l'humanité, dans la seconde moitié du siècle, une énergie presque illimitée.
     Face à ITER, le réacteur expérimental de fusion thermonucléaire qui va être construit à Cadarache (Bouches-du-Rhône), pour 10 milliards €, voici HiPER (High Power Laser Energy Research), un autre grand instrument de recherche, dont le pré-projet vient d'être sélectionné par la Commission européenne pour le 7e programme-cadre.
     Dans les deux cas, il s'agit de démontrer la possibilité de contrôler la réaction de fusion qui fait briller le Soleil. Au coeur des étoiles, les noyaux d'hydrogène se combinent pour former des noyaux plus lourds, en libérant une formidable énergie. C'est cette alchimie que souhaitent reproduire les physiciens, en faisant s'assembler des noyaux de deux isotopes de l'hydrogène, le deutérium et le tritium, dont la fusion produit de l'hélium, des neutrons et de l'énergie.
     Deux voies sont explorées. La première, à confinement magnétique, consiste à piéger le mélange gazeux à l'intérieur de vastes chambres à air sous vide: c'est le principe d'ITER. La seconde, à confinement inertiel, utilise des lasers pour irradier de très petites quantités de ce mélange: c'est la technologie développée par HiPER.
     "Avec la première filière, il s'agit de maintenir à très haute température un plasma de basse densité pendant un temps relativement long, de l'ordre de la seconde. Avec la deuxième, le plasma est de très haute densité (supérieure d'un facteur 109) et le temps de réaction extrêmement court (de l'ordre du milliardième de seconde)", explique Michel Koenig, de l'Ecole polytechnique, l'un des animateurs du programme.

100 MILLIONS DE DEGRÉS
     Pour provoquer la fusion du deutérium et du tritium, encapsulés dans une minibille d'un à deux millimètres de diamètre, les chercheurs ont recours à des lasers de très forte énergie. Certains de ces lasers, à impulsions longues, compriment la bille où la densité atteint environ 300 gr/cm3 et la température 100 millions de degrés Celsius. Un autre laser, à impulsions courtes, guidé par un cône en or, injecte des électrons au coeur de la microbille, où ceux-ci déposent leur énergie, provoquant l'allumage du mélange. L'objectif étant de récupérer davantage d'énergie qu'il en est consommé pour produire la réaction, sous forme de chaleur qui, dans les réacteurs du futur, serait convertie en électricité.

     Les premiers travaux sur la fusion par laser datent des années 1970. Des installations militaires existent, aux Etats-Unis avec le NIF (National Ignition Facility) du Lawrence Livermore National Laboratory, et en France avec le LMJ (Laser Mégajoule) de Bordeaux, dédié à la simulation des armes nucléaires. Des centres de recherche civile existent également, aux Etats-Unis, au Japon, en Grande-Bretagne et en France. Mais l'Europe avait pris, dans ce domaine, du retard.
     Elle compte se donner plusieurs longueurs d'avance avec HiPER, associant 9 pays: Royaume-Uni, France, Espagne, Allemagne, Pologne, Italie, Portugal, République tchèque et Grèce. Pour l'heure, indique Christine Labaune, directrice de l'Institut Lasers et Plasmas et coordonnatrice adjointe du projet, Bruxelles est en passe de donner son accord pour un financement de quelques millions d'euros pour la phase préparatoire, qui devrait débuter fin 2007 ou début 2008. Si cette phase est concluante, la construction pourrait débuter entre 2012 et 2015, pour un coût estimé à 750 millions €. L'implantation n'est pas encore choisie, mais la Grande-Bretagne, qui pilote le projet, nourrit de sérieux espoirs.
     Les défis scientifiques et technologiques sont immenses. Ce n'est pas avant 2050 que pourrait voir le jour un réacteur électrogène industriel. Et que l'on saura si la fusion nucléaire, version ITER ou version HiPER, tient ou non ses promesses.
Pierre Le Hir
Lexique
     Fusion: à l'inverse de la fission, qui désigne la cassure d'un noyau atomique lourd, à l'oeuvre dans les réacteurs nucléaires, cette forme de libération de l'énergie correspond à l'agglomération de deux noyaux atomiques légers, se fondant l'un dans l'autre pour former un noyau plus lourd. Ce type de réaction se rencontre dans les étoiles, et dans les bombes thermonucléaires.
     Deutérium et tritium: les deux isotopes de l'hydrogène nécessaires à la fusion nucléaire offrent une ressource énergétique quasiment illimitée. Le deutérium peut être extrait de l'eau (environ 30 grammes par mètre cube). Les réserves sont de plusieurs millions d'années. Le tritium existe dans la nature à l'état de traces, mais peut être obtenu à partir du lithium, abondant dans les océans. 

accueil actualité nucléaire