A l'heure actuelle, les cellules photovoltaïques demeurent relativement peu efficaces dans l'opération de conversion de la lumière en électricité. En dépit des cellules à multi-jonctions qui permettent de convertir plus de 40% de l'énergie incidente et de matériaux semiconducteurs plus simples possédant en moyenne une efficacité de 20% suite à l'industrialisation à grande échelle, ces cellules ne convertissent toujours qu'un tiers de l'énergie incidente. Cependant, il se pourrait qu'une des limitations physiques à l'amélioration du rendement des cellules soit en passe d'être contournée: il s'agit des pertes par chaleur. Des nanocristaux à base de matériaux semiconducteurs permettant d'éviter les fuites d'électrons trop énergétiques seraient le fruit des travaux de chercheurs des universités du Minnesota et du Texas [1]. Rappelons que les cellules solaires sont réalisées à partir de matériaux semiconducteurs en raison des propriétés bien particulières des ces matériaux. Lorsqu'un photon possédant la bonne longueur d'onde vient rencontrer un tel composant, celui-ci libère un électron qui sera ensuite à l'origine avec ses congénères du courant électrique. Néanmoins, nombre de ces électrons libérés se dissipent sous forme de chaleur au lieu de participer au flux électrique global. Des travaux de ces équipes ont déjà montré par le passé que des nanocristaux à base de matériaux semiconducteurs pouvaient en effet "ralentir" ces électrons "surchauffés". Par voie de conséquence, ces nanocristaux, aussi appelés boîtes quantiques (quantum dots) [2], seraient susceptibles d'augmenter l'efficacité des cellules solaires. Les résultats de leurs recherches montrent que c'est en pratique bien le cas. En plus de capturer les électrons énergétiques, les boîtes quantiques permettent aussi de les transmettre à un matériau receveur tel que le dioxyde de titane usuellement employé dans les cellules solaires conventionnelles. (suite)
|
suite:
En pratique, ce transfert se déroule en moins de 50 femtosecondes. Du fait de l'extrême rapidité du transfert, moins d'électrons sont perdus sous forme de chaleur et l'efficacité théorique de la cellule atteindrait 66%. Malheureusement, cet avantage remarquable des boîtes quantiques doit encore être intégré dans l'architecture d'une cellule solaire. La prochaine étape consiste à montrer que les électrons capturés par ce procédé et le courant qui en découle peuvent être transmis dans un câble comme c'est le cas dans toutes les cellules. En effet, il faudra alors réaliser un câble assez petit pour connecter une cellule photovoltaïque à base de boîtes quantiques, dont le diamètre n'excéderait pas 6,7 nanomètres, et qui ne dissiperait pas de manière trop importante l'énergie transmise. Cette étape, la plus délicate, risque de prendre plusieurs années avant d'être réalisée mais les chimistes de ces universités ont déjà ouvert le champ à de nombreuses pistes d'amélioration des performances des cellules solaires [3]. Certaines startups telles que Magnolia Solar [4] se sont déjà lancées dans la course. La société sponsorisée par le Département de l'Energie américain (DOE) à hauteur d'un million de dollars avance main dans la main avec le département de Nano-Ingénierie de l'université d'Albanie à New-York. Les percées telles que les boîtes quantiques ne représentent qu'une des facettes du futur du solaire. Il y a à l'heure actuelle d'innombrables pistes en cours d'exploration. Soulignons les plus importantes: les revêtements haute performance qui permettent d'augmenter l'efficacité en éliminant partiellement les réflexions parasites, les systèmes de suivi de la trajectoire du soleil. Mais à l'heure actuelle, nul ne peut prédire laquelle franchira les portes des laboratoires... |
Friday, June 18, 2010
Researchers demonstrate that high-energy electrons lost in conventional solar cells can be captured. By Katherine Bourzac There's a limit on the conversion efficiency
of a conventional solar cell. No matter how it's tweaked, it can only convert
31% of the light that hits it into usable electrical current. That's because
there's a broad spectrum of wavelengths in sunlight, and some of it has
more energy than the active material in the solar cell can handle. High-energy
light hits the active material in a solar cell and knocks loose electrons
that have a similarly high energy--then these electrons rapidly lose that
excess energy as heat.
|
Careful design at the nanoscale is key. Instead
of a conventional bulk semiconductor, the researchers used quantum
dots, because these nanomaterials can confine electrons over a longer
timescale. "Nanomaterials can keep electrons
electrons hot for a longer period of time, so that you can get them out,"
says Xiaoyang Zhu, professor of chemistry at the University of Texas, Austin.
The confinement is great--until you want to get the hot electrons out. "The electron likes to stay inside the nanomaterial, so you need to make an extremely strong interaction with another material" that will conduct the electrons out of the quantum dot, Zhu says. His group coated the quantum dots with a very thin layer of an electrical conductor, and were meticulous about the quality of the interface between that material and the quantum dots. So now it's possible to get hot electrons out, but one major problem remains. Those hot electrons require new device designs that prevent them from simply losing their energy to heat once they enter the metal wire of an electrical circuit. "We hope to inspire people to work on the engineering," says Zhu. This research was published this week in the journal Science. |
Contact: David Bricker
brickerd@indiana.edu 812-856-9035 Indiana University
BLOOMINGTON, Ind. -- To make large sheets of carbon available for light
collection, Indiana University Bloomington chemists have devised an unusual
solution -- attach what amounts to a 3-D bramble patch to each side of
the carbon sheet. Using that method, the scientists say they were able
to dissolve sheets containing as many as 168 carbon atoms, a first.
(suite)
|
suite:
Unfortunately, scientists find large sheets of graphene difficult to work with, and their sizes even harder to control. The bigger the graphene sheet, the stickier it is, making it more likely to attract and glom onto other graphene sheets. Multiple layers of graphene may be good for taking notes, but they also prevent electricity. Chemists and engineers experimenting with graphene have come up with a whole host of strategies for keeping single graphene sheets separate. The most effective solution prior to the Nano Letters paper has been breaking up graphite (top-down) into sheets and wrap polymers around them to make them isolated from one another. But this makes graphene sheets with random sizes that are too large for light absorption for solar cells. Li and his collaborators tried a different idea. By attaching a semi-rigid, semi-flexible, three-dimensional sidegroup to the sides of the graphene, they were able to keep graphene sheets as big as 168 carbon atoms from adhering to one another. With this method, they could make the graphene sheets from smaller molecules (bottom-up) so that they are uniform in size. To the scientists' knowledge, it is the biggest stable graphene sheet ever made with the bottom-up approach. The sidegroup consists of a hexagonal carbon ring and three long, barbed tails made of carbon and hydrogen. Because the graphene sheet is rigid, the sidegroup ring is forced to rotate about 90 degrees relative to the plane of the graphene. The three brambly tails are free to whip about, but two of them will tend to enclose the graphene sheet to which they are attached. The tails don't merely act as a cage, however. They also serve as a handle for the organic solvent so that the entire structure can be dissolved. Li and his colleagues were able to dissolve 30 mg of the species per 30 mL of solvent. "In this paper, we found a new way to make graphene soluble," Li said. "This is just as important as the relatively large size of the graphene itself." To test the effectiveness of their graphene light acceptor, the scientists constructed rudimentary solar cells using titanium dioxide as an electron acceptor. The scientists were able to achieve a 200-microampere-per-square-cm current density and an open-circuit voltage of 0.48 volts. The graphene sheets absorbed a significant amount of light in the visible to near-infrared range (200 to 900 nm or so) with peak absorption occurring at 591 nm. The scientists are in the process of redesigning the graphene sheets with sticky ends that bind to titanium dioxide, which will improve the efficiency of the solar cells. "Harvesting energy from the sun is a prerequisite step," Li said. "How to turn the energy into electricity is the next. We think we have a good start." PhD students Xin Yan and Xiao Cui and postdoctoral fellow Binsong Li also contributed to this research. It was funded by grants from the National Science Foundation and the American Chemical Society Petroleum Research Fund. To speak with Liang-shi Li, please contact David Bricker, University Communciations, at 812-856-9035 or brickerd@indiana.edu. "Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics," Nano Letters (Articles ASAP) |